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Al in Next-Generation Wireless Systems

o Al-based “apps” are key components of next-generation wireless
architectures [Bonati et al, '23]
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https://ieeexplore.ieee.org/abstract/document/10024837

Al in Next-Generation Wireless Systems

@ Al apps for decision making, e.g., decoding at the PHY [Cammerer et

al, '23]
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Al in Next-Generation Wireless Systems

o Al apps for simulation, e.g., digital twins [Alkhateeb et al, '23] [Ruah et
al, '23]
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https://ieeexplore.ieee.org/abstract/document/10198573
https://ieeexplore.ieee.org/abstract/document/10234596
https://ieeexplore.ieee.org/abstract/document/10234596

Al in Next-Generation Wireless Systems

@ Al apps are typically arranged into functional graphs, in which
outputs from one app feed into another app [Almeida et al, '24] [Mungari

et al '24]
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https://ieeexplore.ieee.org/abstract/document/10329927
https://arxiv.org/abs/2405.18198
https://arxiv.org/abs/2405.18198

Al in Next-Generation Wireless Systems

@ Example: prediction-based optimization or control [Lindemann et al,
'22] [Zecchin et al, '24]
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https://ieeexplore.ieee.org/abstract/document/10172259
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https://ieeexplore.ieee.org/abstract/document/10445122

Al in Next-Generation Wireless Systems

@ Current deployments of Al apps are best effort, lacking the
theoretical backing of conventional model-based solutions

Given pre-trained Al apps, can we ensure reliability at deployment time
(irrespective of the quality of the underlying Al apps)?
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Al in Next-Generation Wireless Systems

@ Current deployments of Al apps are best effort, lacking the
theoretical backing of conventional model-based solutions

Given pre-trained Al apps, can we ensure reliability at deployment time
(irrespective of the quality of the underlying Al apps)?

© How to ensure reliability of an Al app used for decision making?

@ How to ensure reliability of an Al app used for prediction-based
optimization or control?

© How to ensure end-to-end reliability of composite Al modules?
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Al in Next-Generation Wireless Systems
© How to ensure reliability of a single Al app used for decision
making?
» Conformal prediction
© How to ensure reliability of an Al app used for prediction-based
optimization or control?
» Conformal risk control
© How to ensure end-to-end reliability of composite Al modules?
> Learn then test

Osvaldo Simeone Reliable Wireless Al 9 /54



Reliable Al-Based Decision Making
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Reliable Al-Decision Making
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Can We Trust an Al App?

@ Al models assign, implicitly or explicitly, a confidence level to
different possible outputs

wrong!
( x\
. A woman, standing behind a girl, cntailment
premise: . . .
helping the girl with an experiment.
“contradiction”
. A woman is sitting next to a girl
hypothesis: . . . “ »
Yp while they finish an experiment. neutral
\_ true (gold) answer: “no agreement” ]
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Can We Trust an Al App?

@ Al models assign, implicitly or explicitly, a confidence level to
different possible outputs

o Reliability via calibration: If Al confidence = true accuracy = ask
a second opinion, refuse to make a decision, ...
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Can We Trust an Al App?

@ Al models assign, implicitly or explicitly, a confidence level to
different possible outputs

o Reliability via calibration: If Al confidence = true accuracy = ask
a second opinion, refuse to make a decision, ...

@ But Al models are overconfident: confidence > true accuracy
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Can We Trust an Al App?

@ There is typically a trade-off between calibration and accuracy [Huang
et al, '24][Tao et al, '23][Kamran and Wien '21]
@ (Expected calibration error (ECE) = expected gap between confidence and

accuracy)
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https://arxiv.org/pdf/2308.11838.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16098

Reliability via Set Prediction

@ One way to alleviate this problem is via top-k set prediction

conventional top-k

i i true label
input confidence prediction prediction set
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— pizza \/
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) ) conventional top-k
input model confidence - o true label
prediction prediction set
— cat
t— dog \/
+— melon .
L fork — dog {dog, pizza, cat} cat
— chair
{ [— pizza v
—cat
t— dog
— melon . .
ok WY — {pizza, chair, fork} | pizza
— chair v
{ |— pizza Vv

o Reliability via coverage? No, the predicted set may not contain the
true output with some desired probability
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o Reliability via coverage? No, the predicted set may not contain the
true output with some desired probability

o Non-adaptive set sizes
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Reliability via Set Prediction

@ Alternatively, create prediction sets by including all outputs with
confidence above a threshold

conventional conformal

input model confidence o . true label
prediction prediction set
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o Adaptive set sizes
@ Applicable also to continuous outputs (regression)
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Reliability via Set Prediction

@ Alternatively, create prediction sets by including all outputs with
confidence above a threshold

conventional conformal
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@ Applicable also to continuous outputs (regression)

o Reliability via coverage?
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Conformal Prediction
o Conformal prediction guarantees reliability via coverage

Pr[true output € predicted set] > 1 — «

for any user-defined miscoverage level a

output vector p(y|x,0)
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Offline Conformal Prediction

@ Selects threshold based on validation data
e Guarantees coverage for exchangeable data (e.g., i.i.d.) [Vovk et al,
'05]

validation data set confidence confidence
B 'y

classes empirical risk

Osvaldo Simeone Reliable Wireless Al 17 / 54


https://link.springer.com/book/10.1007/978-3-031-06649-8
https://link.springer.com/book/10.1007/978-3-031-06649-8

Online Conformal Prediction

@ Adjusts the threshold adaptively based on past errors to minimize the
regret [Gibbs and Candes,’ 21] [Feldman et al '22]

e Guarantees coverage on average over time (see also [Angelopoulos et al

'24])
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https://proceedings.neurips.cc/paper/2021/hash/0d441de75945e5acbc865406fc9a2559-Abstract.html
https://arxiv.org/abs/2205.09095
https://arxiv.org/html/2402.01139v1
https://arxiv.org/html/2402.01139v1

Calibration vs. Informativeness

o Calibration is guaranteed, irrespective of the quality of the Al model

o But, if the Al model is poor, the resulting predicted set may be
uniformative [Zecchin et al, '24] [Park et al '24]

@ Train Data @ Train Data

=< Ground Truth == Ground Truth

— Point Predictor Point Predictor

..: CP Set Predictor 1 CP Set Predictor
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https://arxiv.org/abs/2401.11810
https://ieeexplore.ieee.org/abstract/document/10293257

Applications

@ Conformal prediction can be wrapped around the use of any Al app
to ensure reliability via coverage

@ Examples of use cases [cohen et al, 23]

» List demodulation, list decoding
» Modulation classification

» Channel prediction

> Device tracking
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https://ieeexplore.ieee.org/abstract/document/10262367

Example

e Predict the angle of arrival (AoA) of the line-of-sight path between
a base station and a moving vehicle

@ The evolution of yy.,_1 conditioned on y_7._1 is multimodal due to
the unknown vehicle future route
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Time Series Prediction

@ Provided the past T samples of a time series y_1,...,y_1, predict
the next 7 samples yp, ..., ¥r—1

@ Assume the availability of a probabilistic sequence model (e.g.,
transformer) p(yo.r—1|y—7:-1)

@ We wish to obtain a reliable set predictor from an arbitrary
probabilistic sequence model
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Time Series Prediction

@ Previous work used a single prediction y;.._1 to evaluate confidence
as [Lindemann et al '23]
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Time Series Prediction
e Sample a number of prototypes P™ = {§{.__,}™, from the
probabilistic model p(yo.r—1]y—T1:-1)
@ Use the confidence score [Zecchin et al, '24]
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https://ieeexplore.ieee.org/abstract/document/10445122

Time Series Prediction

@ Channel prediction: The performance depends on the predictor and
on the function used to evaluate the confidence
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Reliable Al for Prediction-Based
Optimization and Control
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Reliable Al for Prediction-Based Optimization and Control

{:o:} ,|  optimization/
control
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Prediction-Based Optimization

o Consider constrained optimization problems of the form

maximize U(x) (utility)

subject to E,[R(x,y)] < a (reliability constraint)

where the target variable y is unknown and must be predicted
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Example

o Power allocation for unlicensed user subject to an average
interference constraint for a licensed user:

maximize U(x)
X

subject to E,[R(x,y)] < «

(unlicensed user rate)

(interference constraint)

@ The target variable y is the channel gain of the licensed user

Interfering Channel Gain

Observed

Prediction

f((A))
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Unlicensed User
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Prediction-Based Control
@ Choose a sequence of actions xp.._1 to control the state sp.-_1 of a
dynamical system so that
maximize U(sp.r—1) (utility)
X0:7—1

subject to By, [R(so:r—1, Y0:r—1)] < o (reliability constraint)

for some unknown target process yp.,_1

= ; Yo
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Prediction-Based Optimization and Control

@ A conventional best-effort prediction-based optimization or control
would replace the target with a prediction y

maximize U(x) (utility)
X
subject to R(x,y) < « (reliability constraint)

@ However, this does not guarantee reliability
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Prediction-Based Control and Control

@ With a conformal prediction-based predicted set, the average
constraint can be turned into a worst-case constraint [Lindemann et al
'23] [Zecchin et al '24]

maximize U(x)
X

subject to max  R(x,y) <p
y€Epredicted set

where (3 is a function of «
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https://ieeexplore.ieee.org/abstract/document/10445122

Example

o Reliability via coverage may not provide an ideal solution when used

Interfering Channel Gain

for prediction-based optimization or control
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Example

L(y, predicted set) = 1(y ¢ predicted set) #(y)
—~~

increasing
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Conformal Risk Control

o Conformal risk control generalizes conformal prediction by ensuring
the reliability requirement [Angelopoulos, et al '22] [Cohen et al '24]

E[L(true output, predicted set)] < «

as long as the loss function L is decreasing as the predicted set grows

@ Note that the conformal prediction miscoverage loss is a special case:

L(true output, predicted set) = 1(true output ¢ predicted set)
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https://arxiv.org/abs/2208.02814
https://arxiv.org/abs/2401.11974

Conformal Risk Control

@ As for conformal prediction, conformal risk control can be
implemented offline or online

validation data set confidence

[04

empirical risk
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Example

@ The performance level in terms of utility depends on the quality of
the predictor and on the confidence function
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Example

o Proactive scheduling for URLLC [Cohen, et al '23] and spectrum

sensing [Lee et al '24]

URLLC generation
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https://ieeexplore.ieee.org/abstract/document/10093058
https://arxiv.org/abs/2405.17071

Reliable Composition of Al Models
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Reliable Composition of Al Models

@ Graph of pre-trained Al apps, each with free hyperparameters
(e.g., temperature, module selection, fine-tuning learning rate,
complexity-fidelity trade-off)

Al app 1 | Al app 2 | Al'app 3
(A2pp 1) | (a2pp2) | (1app3)
Alapp 4
(27PP %)

@ How to select a hyperparameter vector A\ so as to guarantee
end-to-end reliability (with minimal data requirements)?

Prl[R(A) <a]>1-96
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Reliable Composition of Al Models

Conformal risk control is not directly applicable, since it applies to a
single hyperparameter A and to a monotonic loss R(\)

Conventional approach: Use validation data to estimate the risk as
R(A), and then choose vector \ as

mini}\mize R())

This may lead to overfitting, failing to satisfy end-to-end reliability

Furthermore, it is not applicable if evaluating requires f\’()\) real-world
testing
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Multi-Hypothesis Testing

@ Hyperparameter selection as scientific discovery or A/B testing
(multi-hypothesis testing) [Angelopoulos et al '22]

“zivs. % Color
picl Evs. ﬁ Size

null hypotheses

(current settings) VS, Orientation
1
1
Vs, Style
:
1
: VS. Logo

Osvaldo Simeone Reliable Wireless Al 42 / 54


https://arxiv.org/abs/2110.01052

Multi-Hypothesis Testing

e Family-wise error rate (FWER) control:

Pr[no false discovery] > 1 — ¢

E ’]E Vvs. % Color

| : discoveries
B vs.  Size
1
! ''vs. Orientation
1 1 -
[ — | : :
vs.!  Style

Lo
Y ¥
! ' VS. Logo
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Learn Then Test

@ Learn then test: Test one hypothesis for each candidate
hyperparameter vector A [Angelopoulos et al '22]

o FWER guarantees that all selected hyperparameters are reliable with
probability > 1 — ¢

multi-hypothesis testing (MHT)

Ky RO > o —>

hyperparameter| /A Ky, R(Ag) >a —= MHT Are\(5)
pre-selection . (6)

FHy,. R(Ag) > o —

K

Pr| max RA) <a |>21-§
AEA™(4)
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https://arxiv.org/abs/2110.01052

Learn Then Test via Fixed-Sequence Testing

Input: Pre-selected subset of hyperparameters A
Order the hyperparameter in any way

Set j=1

Repeat until reliability check is violated

» Estimate risk as R(A\0)) based on N validation data points
» Reliability check:

—1In(d)

RO < o —
(W) <a 2N

> If checked, add AU) to A™!(6)
> j=j+1
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Digital Twin-Based Pareto Testing

@ How to pre-select hyperparameters and the testing order? Pareto
testing [Laufer-Goldshtein et al '22] via a digital twin [Chen et al '24]

hyperparameter
pre-selection

multi-hypothesis testing

(MHT)

Jy, 0 R(A) >a —
Hy,w R(Ag) > a —>

Hy,w R(Ag) > a—=

MHT
Q)

Are\ (6)

O\

O (aux. objective)

~dt

digital twin

Osvaldo Simeone

Pr[ max R(\) Sa} >1-6

AeA™(8)
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https://arxiv.org/abs/2210.07913
https://arxiv.org/abs/2404.01815

Neuromorphic Communications

encoding SNN shared
st ‘ﬂ!

oo o
Pl | -, 3
! R SRR |
Ll T [

decoding SNN

@ Neuromorphic communication integrates neuromorphic sensing,
impulse radio communications, and neuromorphic computing
[Skatchkovsky et al '21] [Chen et al "23]
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Neuromorphic Communications

o Hardware implementation showcases potential scaling to
thousands of nodes [Lee at al '24]

Transceiver
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Neuromorphic Communications

'\/V"/\-aw l Tx =
[ time| SNN E IR
transmitter
VT |
.| signal ot o
: detection onve
@ -
wake-up _T -
WN\_/\]\. transmitter wake-up signal
W, |p (WUS)

Rx wake-up
receiver
™)

on/off @

main
receiver

inference result «—— SNN
@9 :

@ Neuromorphic communications with a wake-up radio [Chen et al '24]

o Hyperparameters: thresholds for sensing, wake-up radio signal
detection, and decision making
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https://arxiv.org/abs/2404.01815

Neuromorphic Communications

@ Based on simulations, the digital twin determines an estimated
energy-risk Pareto boundary [Laufer-Goldshtein et al '22]

@ Lean the test is applied sequentially starting from the lowest
estimated risk

Physical Twin

Digital Twin
EPTG) +7I7T()

EPTQ) + 7IPT()

dataset
o D

ial testing

candidate

hyperparameters |dataset ‘
) tual
= D —f [ (Gt )]

Pareto frontier  LPT(2)
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https://arxiv.org/abs/2210.07913

Digital Twin-Based Learn Then Test

0.25

)
o o
— )
« =]

Expected loss L(1*
IS
=

e o
= =3
S G

0.10 015 020 025
a
(@

Osvaldo Simeone

60
50
© 025 N DT-LIT
= = 40
[N =
s LTT g
o 830
‘g 0.20 g
@« 7]
g § 20
DT-LTT
0.15 LTT
gw
& 0
0'100,10 0.15 aozo 0.25 0.10  0.15 @ 020 025
() ©

Reliable Wireless Al

51 / 54



Conclusions
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Conclusions

@ Recent advances in statistics enable the post-hoc calibration of
pre-trained Al model, ensuring reliability for

» decision making
» model-based optimization and prediction
» composition of Al models
@ Conformal prediction, conformal risk control, and learn then test are
easily wrapped around existing Al models
@ Directions for research:
> In-depth exploration of other use cases for wireless systems

» Information-theoretic analysis
» Decentralized implementations
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Reliability via Set Prediction
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Reliability via Set Prediction

fox fox gray rain fox X

g i bucket, marmot, i K, 1, beaver, polecat
squirrel squirrel, for, Puckets i MRt manilisl, gk, el Mg e

T 0.82 0.03 0.02 0.22

[Angelopoulos et al ‘23]
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Reliability via Set Prediction

interstitial edema. [..] Hilar congestion is mild [...]

(&) Regenerate? ][ T Reject? x} \

¥, [..] The heart appears mildly enlarged. There is hilar ‘

¥ : [.] Cardiomegaly is moderate. There is mild pulmonary |

EXtest) = {y1,y3}

— no frank edema. [..]
— 4
" &) Regenerate? 7 Reject?
AG)=0]
§y* 1 [.]The heartis mildly : ¥3: [..] Mild to moderate enlargement of the cardiac
tenlarged. The lungs are clear. No | silhouette. [...] There is no pulmonary edema. [...]

—
[ (& Regenerate? O][ 7 Reject? x
- )

[Quach et al 23]
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Offline Conformal Prediction

@ Example [Toccaceli, '19]

both classes

a = 0.05

Uncertain

Labelo  *

Labelo  *

Empty Empty
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https://cml.rhul.ac.uk/people/ptocca/HomePage/Toccaceli_CP___Venn_Tutorial.pdf

Example

@ Using conventional prediction-based optimization, the output of the
scheduler may be unreliable...

Conventional
Scheduler

URLLC generation
1800

1820
1840
1860
1880

1900

Frames

1920

1940

1960

1980

2000
2 gpgon 829
(a) (b) Underestimating predictor
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Example

@ ... or inefficient

Conventional " Conventional

URLLC generation Scheduler Scheduler

1800
1820
1840
1860

1880

1900

Frames

1920

1940

1960

1980

0 U
2 4gp 81012 82% 98%

(a) (b) Underestimating predictor (C) Overestimating predictor
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Example

@ Using conformal risk control guarantees reliable and efficient
resource allocation, irrespective of the calibration of the predictor
[Cohen et al '23]

URLLC generation Conventional CP-based Conventional CP-based reliability

Scheduler Scheduler

scheduler scheduler _indicator

1800

1820

1840

Frames

2 4p 1012 82% 90%| 98% 90%
(a) (b) Underestimating predictor (C) Overestimating predictor
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https://ieeexplore.ieee.org/abstract/document/10093058?casa_token=vjwJnr6_QsEAAAAA:MvMHoCjZwYcwASIZ2gIBl_nF0BA0I8hkWr8PSqJ4u6KOuFSFzzwMHR__r35m38fpxFoC_31h

Neuromorphic Computing

; /\/\[:’___

time ;
enCOdlng (L hidden layers)

I time

@ Neuromorphic computing implements spiking neural networks
(SNNs)
@ SNNs leverage sparsity to reduce processing energy [Davies et al '23]
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https://ieeexplore.ieee.org/abstract/document/9395703

Neuromorphic Computing

e E.g., neuromorphic transformer for in-context learning for MIMO
demodulation [Song et al '24]

bobit
Quantizer

Fding
Channel

with Gaussian

V1,81, ¥2,82, -

CYNSNY
*

| Symbol SNN N Pilot Received
| Prediction  Transformer  Examples Data Symbol
| (Answer) Model (Context €y (Query)

06 100
=== Ideal MMSE

=== ANN Transformer
—=— SNN Transformer

BER | BER DER | BER BER | BER DER
0.0605 1 0.0425 0.05 1 0.0375 0,027 0.0205 0.0255
Comp EEE SNN Comp

NN Mem-Ace  EZE SNN Mem-Ace

0.4 1
o : : :
2 z i : ;
= 0° ; ; i

0.2 S : ; :

& : ; :
g ! ! !
E ! ! |
0.0 100 - - -
20 21 22 93 91 95 96 97 98 9V 910N YizglsglagL (L=2.D,=61) (L=1,D, =128) (L =14,D, (
Number of Pre-training Tasks Model Size
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https://arxiv.org/abs/2404.06469

Neuromorphic Sensing

PIXEL ILLUMINANCE

Y
CHANGE-DETECTION EVENTS

GRAYSCALE EVENTS

[Prophesee]

@ Neuromorphic computing is particularly effective when implemented
on data captured by neuromorphic sensors, such as DVS cameras
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Example

@ Beam tracking using vision-based prediction [Imran et al '24]

L(true mask, predicted set) = fraction of missed pixels

Time 7 — 1 Time T

mmWave
Basestation
Right ULA— I:j ——LoftULA
- Front ULA
p
& 25
Distributed Node 1 & Distributed Node 2
’, —Camera y y )) Camera- >
€ oo
§ e g Segmented Mask Segmented Mask
Optimal Beam y ¢

- 4 ) |
o~ 1

|
A sub-region 1[I Sub-region 2[SESEEEE sub-region 3N
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